There have been several effects on the theory of the Riemann zeta function as a result of this computation. First of all, zeros of $\zeta^{\prime}(s)$ were discovered in the critical strip. The evidence of this calculation and further calculations results in the following conjecture: There are zeros of $\zeta^{\prime}(s)$ on dense set of vertical lines for $\frac{1}{2}<$ $\sigma \leqq 1$, and no zeros of $\zeta^{\prime}(s)$ for $\sigma \leqq \frac{1}{2}$ except on the negative real axis. A paper is being prepared to show that $\zeta^{\prime}(s) \neq 0$ in a very large portion of the left half plane ($\sigma \leqq \sigma_{0}, t \geqq t_{0}$).

A second result is that $|\zeta(1-s)|>|\zeta(s)|$ for $\frac{1}{2}<\sigma \leqq 1, t \geqq 10$, if $\zeta(s) \neq 0$. Thus, always for this region $|\zeta(1-s)| \geqq|\zeta(s)|$, and the strictness of this inequality is equivalent to the Riemann hypothesis.

Author's Summary

[^0]79[L].-(a) Mariva I. Zhurina \& Lena N. Karmazina, Tablitsy funktsǐ̌ Lezhandra $P_{-1 / 2+i \tau}(x)$, Tom II (Tables of the Legendre functions $P_{-1 / 2+i \tau}(x)$, Vol. II), Akad. Nauk SSSR, Moscow, 1962, iv +414 p., 27 cm . Price 4.42 rubles.
(b) M. I. た̂Hurina \& L. N. Karmazina, Tablitsy i formuly dlya sfericheski厄h funktsǐ $P_{-1 / 2+i \tau}^{m}(z)$ (Tables and formulas for the spherical functions $\left.P_{-1 / 2+i \tau}^{m}(z)\right)$, Akad. Nauk SSSR, Moscow, 1962, xivii +58 p., 27 cm . Price 0.58 rubles.
Both volumes are in the series of Mathematical Tables of the Computational Centre of the Academy of Sciences of the USSR.
(a) This second volume, promised in the first volume and mentioned in the review of that volume (Math. Comp., v. 16, p. 253-254, April 1962, where for Karamazina read Karmazina and for Izdatel'stov read Izdatel'stvo), has now been published. It will be remembered that Vol. I was for $x^{2}<1$ and that Vol. II was to be for $x>1$. Replacing $-\frac{1}{2}+i_{r}$ by s for convenience in the whole of the present reviews, the second volume does indeed give values of $P_{s}(x)$ to 7D without differences for $\tau=0(0.01) 50$ and $x=1.1(0.1) 2(0.2) 5(0.5) 10(10) 60$. The main table occupies pages $11-270$, $\mathrm{i}-\mathrm{iv}, 271-407$, a total of 401 pages. In principle there are four pages for each of the hundred ranges of width 0.50 in τ, but the table for $\tau=$ $32.50(0.01) 33.00$ occupies five pages, the material having been skillfully and hardly noticeably spaced out (presumably to retrieve an error in pagination).

On pages 408-413 is an auxiliary table which for $x=1.01(0.01) 3(0.05) 5(0.1) 10$ gives, to 7D without differences, values of $\theta=\cosh ^{-1} x$ and of the first four coefficients in the expansion of $P_{s}(\cosh \theta)$ in multiples of $\tau^{-n} J_{n}(\tau \theta)$. The values of θ have been read against the Harvard 9D tables [1], and appear to be correct on the convention that rounding is always downward, except that upward rounding occurs at $x=1.61,1.68,1.72,1.83,2.00,4.45,7.60$. Nine decimals are not enough to decide at $x=2.04$, but special calculation shows that upward rounding occurs here also.
(b) In this slim volume, which relates to both $x^{2}<1$ and $x>1$, the same authors give first, on pages v-xxxviii, a collection of formulas relating to $P_{s}{ }^{m}(z)$. Then follow a description of the tables and a bibliography of 43 items.

The eight tables on pages $1-56$ fall into two groups.
Tables 1 and 2 list for $x=-0.99(0.01)+0.99$, to $7 \mathrm{D}, \theta=\cos ^{-1} x$ and coefficients for the calculation of $P_{s}(\cos \theta)$ and $P_{s}{ }^{1}(\cos \theta)$ when $I_{0}(\tau \theta)$ and $I_{1}(\tau \theta)$ are known, while Tables 3 and 4 list for $x=1.01(0.01) 3(0.05) 5(0.1) 10(1) 60$, to $7 \mathrm{D}, \eta=\cosh ^{-1} x$ and coefficients for the calculation of $P_{s}(\cosh \eta)$ and $P_{s}{ }^{1}(\cosh \eta)$ when $J_{0}(\tau \eta)$ and $J_{1}(\tau \eta)$ are known.

Tables 5 to 8 do not require values of Bessel functions to be available. Tables 5 and 6 list for $x=-0.90(0.01)+0.99$, to 7 D , values of $\theta=\cos ^{-1} x$ and the first eight coefficients in the expansions of $P_{s}(\cos \theta)$ and $\left(1+4 \tau^{2}\right)^{-1} P_{s}{ }^{1}(\cos \theta)$ in powers of τ^{2}. Tables 7 and 8 list for $x=1.01(0.01) 3(0.05) 5(0.1) 10(1) 60$, to $7 \mathrm{D}, \eta=$ $\cosh ^{-1} x$ and the first eight coefficients in the expansions of $P_{s}(\cosh \eta)$ and $\left(1+4 \tau^{2}\right)^{-1} P_{s}{ }^{1}(\cosh \eta)$ in powers of τ^{2}.

There are no differences. Roundings in $\cosh ^{-1} x$ for $x \leqq 10$ are as in (a) above, while for $10<x \leqq 60$ there are upward roundings at $x=35$ and 59 , and unfortunately a major error at $x=11$, where final 689 should be 699 .

Taking the three volumes as a whole, the authors have achieved a gratifying fullness of coverage.
A. F.

1. Harvard University, Annals of the Computation Laboratory, v. 20, Tables of Inverse Hyperbolic Functions, Harvard University Press, Cambridge, Massachusetts, 1949.

80[L, M].-K. Singh, J. F. Lumley \& R. Betchov, Modified Hankel Functions and their Integrals to Argument 10, Engineering Research Bulletin B-87, The Pennsylvania State University, University Park, Pennsylvania, October 1963, $\mathrm{v}+29 \mathrm{p} ., 28 \mathrm{~cm}$. Price $\$ 1.00$.

Let

$$
\begin{aligned}
& h_{1}(z)=(12)^{1 / 6} e^{-i \pi / 6}[A i(-z)-i B i(-z)]=\left(\frac{2}{3} z^{3 / 2}\right)^{1 / 3} H_{1 / 3}^{(1)}\left(\frac{2}{3} z^{3 / 2}\right), \\
& h_{2}(z)=(12)^{1 / 6} e^{i \pi / 6}[A i(-z)+i B i(-z)]=\left(\frac{2}{3} z^{3 / 2}\right)^{1 / 3} H_{1 / 3}^{(2)}\left(\frac{2}{3} z^{3 / 2}\right)
\end{aligned}
$$

where the usual notation for Airy functions and Hankel functions is used. Tables are presented for the real and imaginary parts of

$$
h(z), \int_{0}^{s} h(i u) d u, \int_{0}^{s} \int_{0}^{v} h(i u) d u d v, z=i s
$$

for $s=-10(0.1) 10$, where h stands for h_{1} or h_{2}. The number of significant figures varies from 8 to 4 . Most of the tables are new, though there is some overlap with the tables of M. V. Cerrillo and W. H. Kautz (see Math. Comp., v. 16, 1962, p. 390). The functions were computed using ascending series and asymptotic series representations. The latter are not given in the text. For these and other representations, see Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill Book Co., 1963. I find it most irritating that this report containing work sponsored by the U. S. government should carry a price tag. This petty practice should be discontinued.

[^0]: 1. A. Fletcher, J. C. P. Miller, L. Rosenhead \& L. J. Comrie, An Index of Mathematical Tables, Addison-Wesley, Reading, Massachusetts, 1962.
 2. J. I. Hutchinson, "On the roots of the Riemann Zeta Function," Trans. Amer. Math. Soc., v. 27, 1925, p. 49-60.
